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Parasitic ripple generation on short gravity waves (4 cm to 10 cm wavelengths) is
examined using fully nonlinear computations and laboratory experiments. Time-
marching simulations show sensitivity of the ripple steepness to initial conditions,
in particular to the crest asymmetry. Significant crest fore–aft asymmetry and its
unsteadiness enhance ripple generation at moderate wave steepness, e.g. ka between
0.15 and 0.20, a mechanism not discussed in previous studies. The maximum ripple
steepness (in time) is found to increase monotonically with the underlying (low-
frequency bandpass) wave steepness in our simulations. This is different from the sub-
or super-critical ripple generation predicted by Longuet-Higgins (1995). Unsteadiness
in the underlying gravity–capillary waves is shown to cause ripple modulation and
an interesting ‘crest-shifting’ phenomenon – the gravity–capillary wave crest and the
first ripple on the forward slope merge to form a new crest. Including boundary
layer effects in the free-surface conditions extends some of the simulations at large
wave amplitudes. However, the essential process of parasitic ripple generation is
nonlinear interaction in an inviscid flow. Mechanically generated gravity–capillary
waves demonstrate similar characteristic features of ripple generation and a strong
correlation between ripple steepness and crest asymmetry.

1. Introduction
Ripple generation on steep gravity and gravity–capillary waves has received much

attention in recent years because of remote-sensing applications. The ripple wave-
length and steepness affect the energy distribution in the wave spectrum, and the
correspondence between ripple steepness and the underlying (low-frequency band-
pass) wave steepness is a key in estimating the sea state from Synthetic Aperture
Radar (SAR) returns. Experimental studies on this subject began with observations
by Cox (1958) of ripples riding ahead of wave crests in wind-generated waves. More
recent laboratory studies include Chang, Wagner & Yuen (1978), Yermakov et al.
(1986), Ebuchi, Kawamura & Toba (1987), and Perlin, Lin & Ting (1993). A recent
study by Longuet-Higgins (1992b) also suggests parasitic ripples generate vorticity and
enhance wave dissipation. Lin & Perlin (1999) measure vorticity generated beneath
gravity–capillary waves with capillary ripples present.
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One physical mechanism of this interesting and important phenomenon is clarified
in the theory of Longuet-Higgins (1963, hereafter referred to as LH63) where the
surface-tension force acting near the crest of a steep gravity wave produces ripples
upstream of the crest (as well as longer waves downstream). For simplicity, Longuet-
Higgins used the Stokes gravity wave as the zeroth-order solution to supply the
large crest curvature necessary for ripple excitation. A nearly steady solution is then
obtained by balancing the energy input to the ripples with viscous dissipation; no
feedback from the ripples to the underlying wave is considered. The Longuet-Higgins
solutions are therefore fundamentally different from the steady, inviscid, periodic
solutions found numerically by Schwartz & Vanden-Broeck (1979) and by Chen &
Saffman (1979, 1980). These steady solutions have more prominent ripples in the
wave trough than on the forward face. LH63 and Longuet-Higgins (1995, hereafter
referred to as LH95) recognized that the nonlinearity of the underlying gravity waves
is the essence of upstream ripple generation. This is justified by comparison with Cox
(1958) and with later experimental studies.

Both Chang et al. (1978) and Yermakov et al. (1986) found that LH63 correctly
predicts the ripple wavelengths and decay while underestimating the maximum ripple
steepness θr for given underlying wave steepness ka. This is again shown in Perlin
et al. (1993) with both spatial and temporal measurements. Significant ripples often
appear at moderate wave steepness (0.15 < ka < 0.25) in the experiments whereas
LH63 predicts much smaller ripples. However, LH95 cautioned against comparison
between the quasi-steady theory and the undoubtedly unsteady experiments that
usually measure an instantaneous wave profile or a temporal wave height at a fixed
location. Laboratory studies using mechanical wavemakers make direct comparison
even more ambiguous as the waves and ripples decay quickly downstream. An accurate
model comparison requires a full treatment in time with a semi-infinite domain. Here
we do time marching, but unfortunately with periodic boundary conditions for
computational economy.

In this study, we investigate in detail the complete ripple generation process. Simi-
larly to the aforementioned experiments, we use a mechanical shaker to generate short
gravity–capillary waves upon which parasitic ripples are excited near the crest. The
flap-type wavemaker used here reduces the disturbances that might be introduced by
a plunger wavemaker. Simulations of gravity–capillary waves are based on potential
flow with the viscous effect simply modelled by a damping term in the dynamic
free-surface condition. Watson & Buchsbaum (1996) proposed a weakly nonlinear
approach to study interaction between ripples and longer waves for unsteady ripple
generation. Our time simulation herein is based on a fully nonlinear formulation.

Our results reinforce the conclusion of LH63 that the localized crest curvature of
the underlying wave is the source of the ripples. The disagreement between laboratory
experiments, the numerical results of Dommermuth (1994), and the theory of LH63
is probably due to the unsteadiness and the fore–aft asymmetry of the underlying
waves. These two factors are particularly important to parasitic ripple generation
at moderate ka. In fact, asymmetry is clearly present in the time series of the wave
elevation measured by Cox (1958). We find that an inviscid model adequately describes
these effects in ripple generation. The viscous effect is relatively insignificant. However,
the viscous layer beneath capillary ripples is important during short-wave breaking,
such as the spilling breakers observed by Duncan et al. (1994). In some simulations,
we also observe numerical divergence similar to the singularity formation in the
spilling breaker simulation (Schultz, Huh & Griffin 1994). This divergence is due to
the breakdown of the inviscid model, not the spectral boundary-integral scheme.
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Most recently, Fedorov & Melville (1998) presented a method for calculating
steady parasitic ripples on gravity–capillary waves with wind forcing. Including this
important parameter results in two classes of waves corresponding to different phase
angles between the wind pressure and the underlying wave. They also presented
experimental results on wave spectra and ripple steepness. With wind forcing, the
steepness of capillary ripples can reach significant values even for steady gravity–
capillary waves. An asymmetric wind pressure distribution also enhances the crest
asymmetry of the generated gravity–capillary wave. However, wind effect is beyond
the scope of the present study.

In an improved treatment of parasitic ripple generation (LH95), Longuet-Higgins
found a critical underlying wave steepness kacr beyond which the ripple steepness
decreases with increasing ka. This conclusion is based on the blocking effect of large
ka through an effective gravitational acceleration. It is similar to the trapping of
free gravity waves between two ‘caustics’ on a long wave (Phillips 1981; Shyu &
Phillips 1990) and the blockage of a free capillary wave packet by a gravity wave
(Woodruff & Messiter 1994). In parasitic ripple experiments, however, Yermakov et
al. (1986) observed a monotonic increase of the maximum ripple steepness θr with ka.
Our numerical results agree with Yermakov et al. (1986) but our experiments cannot
confirm this because of the limited ka required to retain a one-dimensional surface.
In our experiments, the ripple steepness is more sensitive to the crest asymmetry
than to the steepness of the underlying wave. A crest-merging interaction between
ripples and the primary wave is found in both experiments and numerical results,
and it resembles the modulation between subcritical waves and supercritical waves.
However, the underlying mechanism is not due to the blockage of ripples by large
ka, but rather due to the nonlinear recurrence of fore–aft crest asymmetry.

This paper is organized as follows. A Cauchy-integral method applied to a time-
marching simulation is described in § 2. Improved experimental techniques are dis-
cussed in § 3. Numerical results are presented in § 4 on crest asymmetry, large ripple
steepness, and ripple modulation. We present our experimental findings in § 5. The
unique features of unsteady ripple generation are summarized in § 6.

2. Numerical strategy with the Cauchy integral method
Large Reynolds number gravity–capillary waves indicate potential flow with the

viscous effect confined to a thin boundary layer near the free surface. We further
assume a deep-water condition and periodicity in the horizontal x-direction. The
chosen length and time scales are k−1 and (gk)−1/2, respectively. Here k represents
the primary wavenumber and g represents the gravitational acceleration. Then, the
dimensionless wavelength λ and the linear wave period T are both 2π. The surface
tension and viscous effects are represented by the inverse Bond number κ and
Reynolds numbers Re:

κ =
σk2

ρg
, Re =

g1/2k−3/2

ν
,

where σ is the surface tension coefficient and ν is the kinematic viscosity. We apply a
fully nonlinear numerical scheme based on the Cauchy integral theorem for complex
potentials (Vinje & Brevig 1981) to describe the two-dimensional potential flow with
a free surface. The physical domain, with z = x + iy where y is measured vertically
upward from the undisturbed free surface, is mapped to an approximate unit circle
using the conformal transformation: ζ = e−iz . This satisfies the deep-water and
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periodic boundary conditions. The Lagrangian forms of the kinematic and dynamic
conditions on the free surface ξ = x+ iy are

Dξ

Dt
=

dw∗

dξ
, (2.1)

Dφ

Dt
= −y +

1

2

∣∣∣∣dw∗dξ

∣∣∣∣2 − κ x′y′′ − x′′y′
(x′x′ + y′y′)3/2

+
2

Re
φ′′, (2.2)

where w(ξ, t) = φ + iψ is the unknown complex potential on the free surface. Here,
D/Dt represents the material derivative and ∗ denotes the complex conjugate. In the
expression for surface curvature, primes represent derivatives with respect to a free-
surface arclength parameter. The discretized velocity potential w(ζj) is determined by
the Cauchy integral equation ∮

∂Ω

w(ξ)

ξ − ζj dξ = iαw(ζj) (2.3)

at the jth node on the free surface. Here, α = π is the included angle of a smooth
surface. The integral equation (2.3) is then converted to an algebraic system for w(ξ).
A cardinal function representation of w is used to evaluate the integrand spectrally
and remove the singularity in the integral (Schultz et al. 1994). All derivatives in the
free-surface conditions are also taken spectrally in the conformed space. More details
of the method are described in Schultz et al. (1994).

Although the boundary layer dynamics beneath the free surface are not modelled,
we model the viscous stress in the boundary layer as described by the last term in (2.2).
A similar viscous term in the dynamic boundary condition is also applied in Miksis,
Vanden-Broeck & Keller (1982) to rising bubbles. Dommermuth (1994) also includes
a term proportional to ξ′′ in (2.1), representing the contribution from the tangential
shear stress in the boundary layer. Our numerical experiments show this additional
viscous term in (2.1) has no qualitative effect on ripple generation. This ad-hoc model is
chosen only to model the linear damping effect as the viscous boundary layer approach
breaks down for very large ripple curvature. More detailed discussion of the boundary-
layer analysis can be found in Lundgren (1989) and Longuet-Higgins (1992a).

We restrict the number of nodes N to powers of 2 and use the FFT to spectrally
estimate the spatial derivatives in the free-surface conditions. Initially, markers zj are
distributed uniformly along the free surface. To avoid clustering of nodes around the
wave crest, we fix the horizontal position of the markers at later time steps (Schultz
et al. 1998). The algebraic equations obtained from (2.3) are solved iteratively for the
unknown part of the complex potential w(ζj) at each later time step. Equations (2.1)
and (2.2) are then applied to the markers with a fourth-order modified Hamming
predictor-corrector method to update φj and zj . Both marching and iteration error
tolerances are set at 10−10. The error in the normalized energy is constant to within
10−10 when the dissipation is absent as measured by

E = Ep + Ek + Es =
1

2

∫ 2π

0

η2dx+
1

2

∫ 2π

0

φ
∂ψ

∂s
ds+ κ

[∫ 2π

0

ds− 2π

]
.

These three terms represent potential energy density Ep, kinetic energy density Ek ,
and surface-tension energy density Es.

Four types of initial conditions are applied to study their effect on ripple strength:
a linear, a third-order and a fifth-order Stokes gravity wave solution (Fenton 1985),
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Figure 1. The experimental setup for wave-profile measurements:
(a) top view, (b) end view, (c) side view.

and a third-order solution for a gravity–capillary wave (Wehausen & Laitone 1960).
Additional information about the time-marching simulation is presented in § 4.

3. Experimental apparatus and measurement techniques
Gravity–capillary waves with frequencies between 4.21 Hz and 6.70 Hz are generated

by a flap-type wavemaker within a 3.0 m long, 0.3 m wide, closed water channel
(figure 1). A minimum water depth of 8 cm is chosen to satisfy the deep-water criterion
for this frequency range. The movable flap wavemaker is hinged to a fixed vertical
plate about 5 cm beneath the undisturbed free surface and is driven by a sinusoidal
signal with excellent repeatability: feedback of its displacement matches the primary
frequency input signal, while other (harmonic) frequency components have less than
0.5% the amplitude of the primary frequency component. The generated waves are
of moderate ka (0.13 to 0.24). At high frequencies, three-dimensional effects become
significant near the wavemaker for ka > 0.24. The wavemaker can generate higher
wave amplitude for lower-frequency waves (4.21 Hz), but strong modulation occurs
possibly due to Benjamin–Feir instability.

The associated experimental apparatus includes: a 5 W argon-ion laser; attendant
optics (two-spherical lenses, two cylindrical lenses, and three dielectric mirrors); a
programmable shaker/wave maker with feedback; signal generation and data acqui-
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sition system; and a high-speed, 8-bit video system with intensified imager and imaging
optics. The motion of the piston shaker (that drives the flap-type wavemaker) is con-
trolled by a Power Macintosh 7100 computer equipped with National Instruments’
data-acquisition boards/LabVIEW software, and the Metrowerks C/C++ compiler.
Programs are written for a synchronous multi-channel signal/trigger generation, such
that the host computer can automatically control the motion of the wavemaker and
the trigger to start the imaging system recording. A laser sheet, generated by the
argon-ion laser and expanded by a cylindrical lens, is created perpendicular to the
wave fronts. Fluorescent dye (fluorescein) is added to the water so that the inter-
section of the laser sheet and the free surface forms a sharp intensity discontinuity
in the image. The measured surface tension for clean water is 72 dyne cm−1 at room
temperature. The dye decreases the surface tension by approximately 1 dyne cm−1 .

A high-speed-video system is used for recording time-series images. The image
recording device is a Kodak Ektapro CID (charge-injection device) intensified im-
ager and controller coupled to an Ektapro EM 1012 processor. The imager is lo-
cated on a (horizontal) precision rail and may be attached to a pulley/weight and
spring/damping system (figure 1). The weight, damping, and spring are adjusted such
that the imager moves at approximately the wave phase velocity. The purpose of this
apparatus is to measure the wave profile as it propagates downstream. The optical
axis is oriented 15o above horizontal to remove the meniscus effect (see end view in
figure 1). There is no significant image distortion in either direction. The irregular
tank bottom is for optical measurements below the surface (Lin & Perlin 1999) that
are not made here. For the short waves studied here, the bottom has no effect. The
Ektapro EM 1012 processor system has the capacity to record 408 image frames
in RAM with two connected imagers with an adjustable framing rate from 50 to
1000 Hz. Once a set of images is stored in the processor, it is downloaded via a
standard GPIB interface to the computer for analysis. An edge-detection routine is
sometimes used to process the data. The location of the water surface elevation, for
any horizontal position in the image, is defined by the point at which the grey-scale
image provides greatest contrast (intensity gradient).

To examine the fine-scale features of the wave profiles, a pair of cylindrical lenses
with a horizontally oriented axis is installed in front of the 100 mm focal-length Canon
lens mounted on the imager. A 10 mm extension tube is attached to the imager. One
cylindrical lens with a 62.5 mm focal length is mounted on an optical rail near the
camera lens, while a second lens with a 150 mm focal length is located approximately
300 mm (adjustable) from the camera lens. These two cylindrical lenses can produce a
vertically magnified virtual image located at the position of the original object. The im-
age is 239×192 pixels. The spatial resolution determined using a precise resolution tar-
get is typically 0.4 mm × 0.05 mm, i.e. an approximately eight-fold magnification in the
vertical direction relative to the horizontal dimension. In practice, the camera lens is
first focused on the illuminated free surface, and then the second cylindrical lens is fo-
cused to produce the virtual image. A horizontal slot with a controllable opening pro-
vides aperture control on the cylindrical lenses (especially the lens nearest the object),
restricting the lens usage to the central region where the distortion is the smallest. The
induced distortion (albeit small) and other details are discussed in Perlin et al. (1993).

4. Numerical results
We confirm the spatial convergence of the time-marching computations by using

four different grids: 64, 128, 256, and 512 nodes per primary wavelength. The devel-
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opment of large surface curvature and steep slope, however, often leads to divergence
for large time unless the error requirement is significantly relaxed. In these situations,
the computation is repeated with smaller time steps until no improvement can be
achieved.

4.1. Unsteady gravity wave and ripple generation

We first study inviscid ripple development on an initially sinusoidal wave (initial
free-surface boundary condition of ξ = ka cos kx and φ = ka sin kx) with κ = 0.07
(λ = 6.5 cm) and ka = 0.20. The linear wave initial condition is partially chosen to
capture the unsteady motion for laboratory conditions with a flap-type wavemaker
following a sinusoidal motion.

The wave profiles at later times are shown in figure 2 in a coordinate system moving
with the linear phase speed c = [g(1+κ)/k]1/2. For clarity, two wavelengths are shown
although we only calculate one. The dots in figure 2 represent the instantaneous
locations of the maximum negative curvature Γ (same sign as the crest curvature).
The wave first becomes both vertically and horizontally asymmetric, i.e. the crest
rises and tilts forward. A wave with horizontal symmetry would have a symmetric
elevation about a vertical axis at the crest. The maximum curvature grows with time,
and its location also moves from the wave crest to the forward face. Ripples on
the steepening forward face become obvious after only one wave period (the eighth
profile from the top). Inclusion of the damping term in (2.2) has little effect on the
ripple steepness and the asymmetry for the moderate waves shown in figure 2. The
parasitic ripple generation is therefore essentially inviscid and irrotational, as alluded
to in LH63.

The ripple growth in figure 2 continues until the inviscid computation fails after two
wave periods. It will be shown later (§ 4.3) that the computational failure is caused
by steep wave slope near the crest and large surface curvature in the ripple trough
where the viscous effect should be included. However, the wave profiles in figure 2
are fully resolved and represent the main features of the inviscid ripple generation.

Simulations of other wavelengths demonstrate the same characteristic features:
occurrence of maximum curvature on the forward face and fore–aft crest asymmetry.
The ripple steepness is significantly larger than the quasi-steady prediction of LH63
and LH95. This qualitatively agrees with the experiments by Perlin et al. (1993) and the
simulation of Dommermuth (1994) where noticeable fore–aft asymmetry and similar
strong ripples are present. The solution of Longuet-Higgins has a more symmetric
primary crest even though the ripple presence is asymmetric about the crest.

It is also worth emphasizing that strong fore–aft asymmetry develops before ripples
are observed. The maximum slope on the forward face eventually reaches 0.60 in
figure 2, while the maximum rear slope oscillates between 0.16 and 0.26. Longuet-
Higgins (1978) found that a local instability of the limiting crest form (120o crest for a
gravity wave) leads to an asymmetric crest and a ‘toe’ on the forward face (Longuet-
Higgins & Cleaver 1994; Longuet-Higgins, Cleaver & Fox 1994). This instability,
however, only develops near a limiting Stokes wave (ka > 0.40), and Stokes waves are
stable to superharmonic disturbances at moderate steepness. Therefore the asymmetry
mechanism shown herein is qualitatively different from the instability of limiting
Stokes waves.

The role of symmetry can be further understood by revisiting the calculations by
Perlin et al. (1993) using the formulation of Schwartz & Vanden-Broeck (1979). While
their formulation is fully nonlinear, steadiness and fore–aft symmetry are assumed.
The solutions found by Perlin et al. (1993), as expected, have much smaller ripple
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Figure 2. Ripple generation on 6.5 cm (κ = 0.07) waves simulated with a sinusoidal initial condition,
an initial ka = 0.20, and Re = ∞. The time increment from top to bottom is T/8, and the frame of
reference moves (left to right) with the linear phase speed. Dots represent the locations of maximum
crest curvature. The vertical scale is exaggerated approxmiately 8:1.

steepness than their observations. As in Perlin et al. (1993), our attempts to find steady,
asymmetric gravity–capillary waves failed. Therefore we propose that unsteadiness
and the horizontal asymmetry of the underlying wave are responsible for some of the
discrepancies and controversy discussed in LH95. In attempting to further verify this,
we are naturally led to study in § 4.2 different initial conditions and the dynamics of
the underlying gravity waves.

4.2. Nonlinear recurrence of crest asymmetry

We again start the calculation with a sinusoidal wave and ka = 0.20, but now with zero
surface tension. The most interesting feature in the subsequent wave motion (figure 3)
is the crest pitching: the crest peaks and tilts forward initially to an asymmetric form,
achieves a maximum steepness with a symmetric but sharper form, tilts backwards
with a reduced steepness and asymmetry, and then resumes the symmetric form once
again. The same sequence repeats after two wave periods, and is not qualitatively
affected by the addition of damping. The two asymmetric crest forms alternate as the
wave propagates from left to right for the entire inviscid simulation of 30 wave periods
(approximately 210 000 time steps). The instantaneous maximum forward slope and
backward slope are denoted by S+ and S− as shown in figure 4. The magnitudes of
|S+| and |S−| oscillate between 0.15 and 0.28.

As we assume spatial periodicity, the modulation in figure 3 is not caused by the
Benjamin–Feir instability, which can lead to a steepened and forward-tilting crest
in an initially uniform wave train (Longuet-Higgins & Cokelet 1976). Bryant (1983)
found a similar crest pitching motion in unsteady gravity waves with a similar period
of 2T near ka = 0.20. Determined by enforcing temporal periodicity, the modulation
period seems to become longer for larger wave steepness. This is also consistent with
the nonlinear recurrence found in Dommermuth (1994) for gravity–capillary waves
with parasitic ripples.

To understand the effect of crest pitching on parasitic ripple generation, we monitor
the crest curvature and mark the maximum curvature by dots in figure 3. The crest
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Figure 3. Gravity wave (κ = 0) profiles over four wave periods in a frame of reference moving
(left to right) at the linear phase speed. The top profile is the sinusoidal initial wave with ka = 0.20.
The profiles are separated by a time interval of T/6, Re = ∞. The vertical scale is exaggerated
approximately 10:1.
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Figure 4. The two asymmetric crest forms in the previous figure:
(a) |S+| > |S−|; (b) |S+| < |S−|.

curvature increases substantially as the crest tilts forward, and its position shifts
away from the maximum wave elevation. Note that the vertical scale in figure 3 is
exaggerated. The crest curvature achieves a maximum of Γ/k = 0.8 when the crest
becomes approximately symmetric (the seventh profile from the top), its value being
approximately four times the crest curvature for the initial sinusoidal wave. For the
symmetric Stokes waves of LH95, a crest curvature of 0.8 corresponds to ka ≈ 0.31,
significantly larger than ka ≈ 0.20 in the unsteady wave of figure 3. Similarly, the
ripple steepness in the experiments of Perlin et al. (1993) at ka = 0.22 is comparable
with the quasi-steady solution of LH63 at ka=0.29. However, this does not contradict
the conclusion of LH63 and LH95 that the curvature-induced pressure is the source
of parasitic ripples. Large crest curvature in the simulated unsteady wave leads to
larger ripple steepness when surface tension is considered as in figure 2.

For pure gravity waves, the unsteadiness and the asymmetric crest pitching are
largely dependent on the initial conditions. Using a third-order Stokes wave as
an initial condition shows weaker crest asymmetry, and significantly reduces the
maximum crest curvature (in time). Applying a fifth-order Stokes wave (Fenton
1985) as an initial condition almost eliminates the crest asymmetry and modulation
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Figure 5. Maximum crest curvature Γ/k of unsteady gravity waves calculated with different initial
conditions: - - � - - , linear wave; �, third-order Stokes wave; •, fifth-order Stokes wave. —— , Crest
curvature of fully nonlinear Stokes wave (LH95).

at moderate steepness. The crest curvature (figure 5) stays close to the Γ/k for
steady Stokes waves (LH95) for all ka. For gravity–capillary waves, however, using
initial conditions closer to the nonlinear Stokes waves does not eliminate the crest
asymmetry. Our simulations still show strong parasitic ripples as explained in § 4.3.

4.3. Crest asymmetry and maximum ripple steepness

In a study of Wilton ripples, Perlin & Ting (1992) observed significant differences be-
tween upstream and downstream wave slopes. Crest asymmetry is also demonstrated
by Chang et al. (1978) for much longer gravity–capillary waves. We now show that it
is almost ubiquitous in experiments on parasitic ripple generation. However, to date
this effect on the ripple steepness has not been emphasized.

Slopes of a gravity–capillary wave and parasitic ripples are illustrated in figure 6.
Similarly to the slope definition for gravity waves, S 0− is the maximum slope on the
backward face of the primary wave crest (the 0th crest). S0

+ represents the slope at
the steepest point before the trough of the first ripple. When there are no ripples,
S 0

+,− are equivalent to S+,− defined earlier in figure 4. The ripple crests are denoted
by i = 1, . . . , n, where n is the total number of ripples. For each ripple crest, the
maximum slopes on the forward face and the backward face are represented by
Si+ and Si−, respectively. These value are easily calculated in our simulations. In the
experiments, we measure ripple slopes from a curve fit of the spatial wave profile.
The steepness of each ripple can be defined as

θi =
Si− − Si+

2
, i = 1, . . . , n.

The maximum ripple steepness θr is defined as the largest θi in both space (an entire
wavelength) and time. The largest ripple during ripple generation is usually the first
one on the forward face, i.e. θr = θ1.

Table 1 summarizes the steepness ka, slopes |S0
+|, |S0−|, and the corresponding
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Figure 6. Definition of slopes on gravity–capillary waves with parasitic ripples. The primary wave
crest is denoted by 0 and the ripple crests are denoted by 1, 2, . . . , n. Si+ and Si− represent the

maximum slopes on the forward and backward faces of each crest. Steepness of the ith ripple θi is
defined as (Si− − Si+)/2.

λ (cm) ka |S 0
+| |S0−| θr Comments

Longuet-Higgins (1995) 6.8 0.227 0.23 0.23 0.07 Theory
8 0.28 0.47 0.35 0.25

Perlin et al. (1993) 6.8 0.22 0.39 0.23 0.17 Experiments with
10.5 0.24 0.35 0.24 0.33 mechanical wavemaker

Zhang (1995) 7.5 0.21 0.65 0.25 0.54 6.8 m s−1 wind generated
5 0.25 0.60 0.16 0.45 9.7 m s−1 wind generated

Dommermuth (1994) 5 0.22 0.42 0.22 0.24 Computation, t = 3T
10 0.28 0.34 0.30 0.06 t = 3T

Mui & Dommermuth 5 0.28 1.12 0.25 0.54 Computation, t = 2T

Present (sinusoidal 6.5 0.20 0.57 0.22 0.20 Computation, t = 2T
initial condition) 5 0.20 0.61 0.26 0.38 t = 2T

Table 1. Horizontal asymmetry for parasitic ripple generation. λ, wavelength; ka, wave steepness;
θr , maximum ripple steepness. Values cited for Zhang (1995) are measured from curve fits of the
reported wave profiles.

θr from several studies on parasitic ripple generation. Slopes and ripple steepness
are directly measured from the reported wave profiles. Experiments with insufficient
information on θr and ka are excluded, such as Chang et al. (1978) and Ebuchi et
al. (1987). Chang et al. (1978) further restricted their study to nearly symmetric wave
profiles at certain locations.

The theory of Longuet-Higgins shows noticeable asymmetry only at larger wave
steepness. Both experiments (Perlin et al. 1993; Zhang 1995) and numerical simula-
tion (Dommermuth 1994) show significant asymmetry and larger ripple steepness at
moderate ka. The crest asymmetry is more significant at shorter wavelengths. In the
study of wind-generated ripples by Zhang (1995), the underlying wave is not strictly
periodic in space and the ka values are at best an upper limit (see figure 12 therein).
However, large |S 0

+| and θr are observed at ka = 0.21. The large |S0
+| obtained in our

simulation is very close to the spilling-breaker limit observed by Bonmarin (1989) for
gravity waves. Local breaking may occur and cause numerical divergence mentioned
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λ (cm) Re κ ka Nmin ∆tmin θr λr (mm) Γ/k |Γr|/k
10 6286 0.029 0.30 512 0.0001 0.30 2.67 4.17 9.39

8 4498 0.045 0.28 256 0.001 0.38 2.80 2.93 7.64
0.24 128 0.001 0.08 3.58 1.15 1.15
0.20 128 0.001 0.02 3.88 0.51 0.38

7 3681 0.059 0.22 128 0.001 0.11 3.25 0.72 2.79

6 2921 0.081 0.21 128 0.001 0.17 3.88 0.76 3.63

5 2222 0.116 0.35 512 0.0001 1.53 3.75 10.35 27.06
0.30 256 0.0002 1.03 3.72 4.85 25.47
0.25 256 0.001 0.38 4.26 1.52 4.06
0.20 128 0.001 0.22 4.69 0.88 2.79
0.18 128 0.001 0.13 4.83 0.64 1.59
0.15 128 0.005 0.11 5.00 0.40 0.64

Table 2. Summary of calculations for unsteady gravity–capillary waves and the obtained parameters
for the parasitic ripples. Maximum ripple steepness θr , the maximum crest curvature Γ/k, and ripple
curvature Γr/k represent the maximum value attained over time and space. The ripple wavelength λr
is averaged over one primary wavelength. The Reynolds number Re and the inverse Bond number
κ are defined in § 2. Also listed are the minimum grid number necessary for spatial convergence
Nmin and the time step ∆tmin (linear wave period: 2π).

in § 4.1. Nonetheless, the crest asymmetry and large ripple steepness in our simulations
are similar to the experimental results in table 1.

Better temporal convergence (longer time marching) is achieved when the higher-
order wave solutions are applied as initial conditions, especially for shorter wave-
lengths. These include a third-order gravity–capillary wave solution (summarized in
table 2) and a fifth-order Stokes wave solution. The calculated θr is smaller than that
obtained with sinusoidal initial conditions, but is still larger than the quasi-steady
prediction of LH95. The crest asymmetry remains pronounced. These results are
similar to Dommermuth (1994) who applied a high-order expansion for a Stokes
wave (Schwartz 1974) as the initial condition. Including the weak dissipation term
in equation (2.2) usually only makes a small difference in the modelling of ripple
formation. However, for larger ka values above 0.25, the added dissipation allows the
computation to proceed past the initial transient maximum of ripple steepness and
achieve the nearly steady decay of ripples (as in Dommermuth 1994). Similarly to the
definition of θr , Γr/k in table 2 represents the maximum ripple curvature (usually in
the trough) over both space and time.

In support of LH63, the ripple steepness increases with ka in table 2. The ripple
wavelength λr does not heavily depend on the wavelength of the primary wave, but
is strongly correlated with ka and the crest curvature Γ/k. On the ripple steepness,
better agreement with LH95 is achieved for longer wavelengths (λ = 8, 10 cm) and our
calculated θr is only slightly larger. The maximum crest curvature is significantly larger
than that of a steady Stokes wave (see figure 5) even though higher-order solutions
are used as initial conditions. Figure 7 shows the forward-tilting crest when the ripples
reach the maximum steepness during their growth. Our computation for λ = 10 cm and
ka > 0.30 diverges before a definite θr can be obtained. This computational difficulty
represents local breaking and the breakdown in the quasi-potential flow formulation.

Another interesting prediction of LH95 is the subcritical and supercritical phe-
nomena described below. Wave-generated ripples experience an effective gravitational
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(a)  k= 6 cm

(b)  k=8 cm

(c)  k=10 cm

Figure 7. The simulated wave profiles when the maximum ripple steepness is observed.
(a) λ = 6 cm, ka = 0.21, |S0

+| = 0.38, |S0−| = 0.21; (b) λ = 8 cm, ka = 0.28, |S0
+| = 0.73, |S0−| = 0.30;

(c) λ = 10 cm, ka = 0.30, |S0
+| = 0.88, |S0−| = 0.34. Two wavelengths are shown and the vertical scale

is exaggerated by 4.

acceleration g∗ = g cos θ − Γq2, which includes the normal component of gravity
and the centrifugal acceleration arising from the surface current q and the surface
curvature Γ . Capillary waves develop only when q exceeds the minimum phase speed
of capillary–gravity waves, cmin = (4g∗σ)1/4. This condition is satisfied everywhere on
the underlying wave when Γ/k is small and the wave is subcritical. For steep gravity
waves where Γ/k is locally large at the crest, the surface current q is less than cmin
near the crest and ripples are then blocked by two caustics determined by q = cmin.
Therefore the ripple steepness increases with increasing ka for subcritical waves, but
starts to decrease once ka surpasses kacr (see figures 12 and 13 of LH95). The first
ripple merges with the primary gravity-wave crest because of the blocking effect. The
critical steepness kacr for the blocking to occur is 0.34, 0.31, and 0.19 for 10 cm, 8 cm,
and 5 cm wavelengths respectively.

Our calculations for λ = 5 cm cover a wide range of ka and therefore facilitate
verification of the critical steepness mentioned above. In figure 8, these results are
compared with measurements from Yermakov et al. (1986), computations from Dom-
mermuth (1994), and some new experimental data. We emphasize that θr shown here
is a transient value different from that defined in LH63 and LH95. The calculated
θr is significantly larger than the prediction of LH95, but is in reasonable agreement
with Yermakov et al. and Dommermuth. At ka = 0.20, Yermakov et al. measured
larger θr , while the computations of Dommermuth show slightly smaller ripples than
our numerical results. Recall that blocking should occur at kacr = 0.19. However, both
our calculations and the experiments by Yermakov et al. (1986) show continuously
increasing θr above kacr = 0.19. The same monotonic increase is also indicated else-
where in the calculation by Dommermuth for λ = 8 cm (see Longuet-Higgins 1996).
Therefore, the unsteadiness may significantly reduce ripple blocking.† The calculated
wave profiles are shown in figure 9.

† In the calculation of Fedorov & Melville (1998) for gravity–capillary waves with wind forcing,
steepness of the capillary ripples also increases monotonically with the underlying wave steepness
until wave breaking.
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Figure 8. The maximum ripple steepness θr from our simulation and previous experiments for
5 cm waves. The solid line is a polynomial fit of our numerical data; �, data cited in table 2; +,
calculated results when sinusoidal initial conditions are applied; ◦, measurements from Yermakov et
al. (1986); 4, numerical results of Dommermuth (1994); •, new experimental data shown in § 5.

(a)

(b)

(c)

(d )

(e)

Figure 9. Simulated 5 cm waves with the maximum ripple steepness shown in figure 8. The initial
ka is (a) 0.15, (b) 0.18, (c) 0.20, (d) 0.25, (e) 0.30. The vertical scale is exaggerated by 4:1.

Three experimental measurements shown in figure 8 suggest significantly larger θr
than our calculations at ka ≈ 0.15. The ripple steepness also decreases rapidly with
a slight increase of ka in the experiments. This decreasing trend is not due to the
effect of steep-wave blocking. It only shows that unsteady ripples are very sensitive to
the underlying crest asymmetry (see § 5.3). Our computations with sinusoidal initial
conditions (ka = 0.15 and 0.20) also show larger ripple steepness. This demonstrates
that the parasitic ripples are also sensitive to the unsteadiness of the underlying wave.

4.4. Parasitic ripple evolution

We have shown in § 4.2 that gravity waves, with finite initial perturbation, exhibit a
‘pitching’ crest motion and alternating asymmetry in wave slope. If the asymmetric
crest is unaffected by small capillary ripples (no strong feedback), the modulation in
crest shape should lead to modulations of ripple steepness too.
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0

T

2T

3T

4T

Figure 10. Simulated 6.5 cm wave with T/12 time interval in a moving coordinate at the linear
wave speed (from left to right). t = 0–4T , ka = 0.15, Re = 3294. The vertical scale is exaggerated.

Indeed, alternating crest asymmetries exist when surface tension is included in the
simulations, but crest–ripple interaction is significant. Figure 10 shows 6.5 cm waves
in a coordinate moving with the linear phase speed. Relative to a fixed coordinate,
the wave moves from left to right. Initially, the wave assumes a sinusoidal profile with
ka = 0.15. It travels faster than its linear speed as expected, but in a unique fashion:
the crest tilts forward initially and ripples appear on the forward face. When the crest
starts tilting backward after two wave periods (the 30th profile from the top), a new
crest emerges from the first ripple on the forward face as if the crest were ‘shifting’
forward abruptly. Note that in the simulation without surface tension, the crest tilts
forward again after 2T (figure 3). The parasitic ripples eventually reach the backward
face of the next crest. This ripple generation process is significantly different from
previous experimental studies where only forward-tilting crests are reported.

The interaction between the primary wave crest and the first ripple persists even
for longer time calculations: it would appear that the ripples are strongest in the
wave trough while the crest follows the same ‘shifting’ motion shown in figure 10.
Here, the crest–ripple interaction is caused by the alternating crest asymmetry, not by
the blocking effect of the steep underlying wave as suggested in LH95. When third-
order gravity–capillary waves are applied as the initial condition, asymmetry and the
crest–ripple interaction are subdued. The maximum crest elevation still shifts between
two positions at the edge of the crest in later stages. Significant ripples are observed
in the wave trough as in the steady solution found by Schwartz & Vanden-Broeck
(1979). Experiments for 5 cm wavelength show similar large ripples in the trough
(§ 5.3) although experiments for longer wavelengths show significant ripples mostly
near the wave crest. In § 5.5, we will discuss experiments with a crest-shifting motion
very similar to that in figure 10.

5. Experimental results
The large ripple steepness demonstrated in Perlin et al. (1993) was suspected by

LH95 to be caused by the mechanical method of wave generation. The plunging
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Frequency (Hz) λl (cm) λm (cm) c (cm s−1) ka

4.21 9.0 10.1 43 0.25–0.11
4.87 7.0 7.5–7.2 36 0.22–0.08
5.26 6.0 6.7–6.5 35 0.21–0.10
6.10 4.7 5.1–4.8 30 0.15–0.03
6.70 4.1 5.0–4.1 — 0.16–0.13

Table 3. The frequency, the wavelength (the linear estimate is λl and the measured value is λm), the
approximate phase speed c, and the underlying wave steepness ka for experiments. The λ and ka
ranges are based upon measurements between 15 cm and 60 cm downstream from the wavemaker
for different wavemaker strokes.

wavemaker in Perlin et al. (1993) can have a ‘pumping’ effect – water on the back of
the wavemaker is transported in the wave direction and produces additional drift and
vorticity. However, the ripple steepness examined here is comparable to Perlin et al.
(1993) even though we adopt a flapping wavemaker and the ‘pumping’ effect is not
present. We recognize that using a rigid wavemaker does not reproduce the particle
velocity given by a Stokes wave. Therefore the generated wave, with or without surface
tension, is different from the Longuet-Higgins gravity-wave solution. Nonetheless,
significant ripples at moderate ka appear in studies on wind-wave fields and in
our and Dommermuth’s (1994) time-marching computations. Hence, large unsteady
ripples are not merely an artifact of the mechanical method of wave generation.

Five sets of experiments are conducted with different wavemaker frequencies:
4.21 Hz, 4.87 Hz, 5.26 Hz, 6.10 Hz, and 6.70 Hz. The corresponding wavelengths range
from about 4 cm to 10 cm as shown in table 3. Because of the wave nonlinearity, the
measured wavelength at a particular frequency is longer than the wavelength estimated
from linear wave theory. Each frequency set consists of measurements for observation
windows moving at approximately the wave phase speed. Three wavemaker stroke
amplitudes are applied to generate different wave amplitudes. We limit the wavemaker
stroke to avoid local breaking and turbulent motion around the wavemaker so that
the generated wave profiles remain two-dimensional for all reported experiments.

The wave amplitude decays significantly between 15 cm and 60 cm downstream
from the wavemaker due to the enhanced damping during ripple generation. As this
has been discussed in detail in previous studies (Perlin et al. 1993), we will focus
on the ripple evolution and the correlation between underlying wave motion and
ripple steepness. The latter is determined from a least-square curve fit of the elevation
profile, its value approximated by one half of the difference between the maximum
(positive) and the minimum (negative) ripple slope. The maximum ripple steepness
usually occurs on the forward face on the ripple closest to the primary wave crest.

5.1. 4.87 Hz experiments

Two small wavemaker strokes produce wave steepness of ka = 0.16 and ka = 0.19
at a distance 21 cm (three wavelengths) from the wavemaker. Figure 11(a) shows
obvious ripples on the forward face and a slightly asymmetric crest for ka = 0.16. The
ripple steepness is slightly smaller in figure 11(b) even though ka = 0.19 is larger and
the crest appears to be sharper. In both cases, the largest ripple steepness appears
near the crest. There is slight temporal oscillation in the primary wave amplitude and
the ripples are quasi-steady at this location. Following the wave crest downstream
(not shown) leads to an almost monotonic temporal decay of the ripples. The ripples



Unsteady ripple generation on gravity–capillary waves 297

(a) (b)

Figure 11. Gravity–capillary waves of 4.87 Hz (λ = 7.5 cm) with (a) ka = 0.16, (b) ka = 0.19.
The image centre is located about 21 cm downstream from the wavemaker.

become much smaller 30 cm downstream such that their existence is only verified by
the intensity variation of the laser sheet in the water column due to surface curvature
variation. These qualitative features are essentially in agreement with LH63.

The waves presented in figure 12 with ka = 0.21 are produced by a larger wavemaker
stroke. As in the computational results of figure 10, the reference frame moves
downstream at the approximate phase velocity to follow the individual wave crest (as
for all the experiments). The capillary ripples appear to be phase-locked to the crest
and their amplitude decays spatially along the forward face of the primary wave.
Approximately, eight capillary ripples can be distinguished in the first frame recorded
21 cm from the wavemaker. Large spatial/temporal modulation of the primary wave
crests is evident, resulting in temporally modulated ripples (from 12 ms to 42 ms).
In figure 12(a), the upstream crest and the downstream crest have local steepness ka
of 0.18 and 0.22, respectively. After a quarter wave period (figure 12h), the upstream
crest achieves a local steepness of ka = 0.23. This spatial modulation resembles the
Benjamin–Feir instability studied by Longuet-Higgins & Cokelet (1976) for gravity
wave trains. The ripple steepness at 48 ms and 54 ms is much less than that at 0 ms
even though the local steepness is 25% larger. Besides viscous dissipation, the primary
reason for the reduced ripple steepness is the more symmetric crest in figure 12(i, j).
We will discuss this effect further in the following sections.

5.2. 5.26 Hz experiments

Figure 13 shows two 6.5 cm waves generated by two different forcing strokes, moving
left to right. Although a larger forcing stroke does not increase ka of the wave
in figure 13(b), the primary wave crest (upstream) is more asymmetric than that
in figure 13(a). Accordingly, the ripple steepness is larger in figure 13(b), and the
spatial modulation is more evident. Both images are obtained approximately three
wavelengths (18 cm) downstream and should be free of the evanescent modes directly
generated by the wavemaker. It is worth noting that the downstream wave of fig-
ure 13(b) has a backward-tilting crest (|S0−| > |S0

+|), similar to our numerical finding
(figure 4).

Figure 14 presents very steep ripples for ka = 0.21. There are at least 14 ripples per
wavelength at 0 ms, more than the number exhibited by the 4.87 Hz waves at similar
ka. Ripples are also present on the leeward surface of the second crest. The ripple
wavelengths decrease from the first ripple (in front of the wave crest) to those in the
trough, but increase again for those on the leeward face. Similar results are observed
in our calculations (e.g. figure 10).

At this frequency, the parasitic ripples also appear nearly phase-locked to the
underlying wave. Their steepness, however, is strongly modulated in time due to the
unsteady motion of the underlying wave. This is the same modulation shown earlier
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(a)  0 ms

(b)  6 ms

(c)  12 ms

(d)  18 ms

(e)  24 ms

( f )  30 ms

(g)  36 ms

(h)  42 ms

(i)  48 ms

( j)  54 ms

Figure 12. Gravity–capillary waves of 4.87 Hz with an average ka = 0.21. The images are recorded
following the underlying wave crest moving left to right.

(a) (b)

Figure 13. Gravity–capillary waves of 5.26 Hz at the instant of maximum ripple steepness, both
recorded about 18 cm downstream: (a) smallest forcing stroke, ka = 0.19, (b) larger forcing stroke,
ka = 0.18.
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(a)  0 ms

(b)  100 ms

(c)  200 ms

(d)  300 ms

(e)  400 ms

( f )  500 ms

Figure 14. A sequence of 5.26 Hz waves following the underlying wave crest from (a) 18 cm to
(f) 33 cm downstream of the wavemaker with approximately 3 cm intervals (average ka = 0.21).

for 4.87 Hz waves. Initially, the two crests shown in figure 14 are of equal amplitudes.
But after 0.2 s, the downstream crest increases, and the upstream crest settles down
(figure 14c). The rising downstream crest seems to block the ripples and increase the
ripple steepness on the upstream crest as compared with figure 14(b). This seems to
be a transitory effect due to spatial modulation not captured by either our calculation
or LH95. The upstream crest rises again and tilts forward at 0.4 s, but now the ripple
presence can only be verified by the refracted laser light in the water.

5.3. 6.10 Hz experiments

Figure 15(a) shows the calculated 5 cm wave at the time of maximum ripple steepness
starting from sinusoidal initial conditions. The subsequent ripple motion in our
calculation is very similar to that of the 6.5 cm waves in figure 10 and therefore
is not shown here. Figure 15(b–f) presents waves recorded by following the wave
crest downstream in the experiments. Initially, the four capillary ripples evident on
the forward face of the primary wave appear to be phase-locked with the crest
(figure 15b). Both the ripple steepness and the number of ripples agree with the
numerical profile. After travelling 5 cm downstream, the ripples are greatly reduced,
and appear to approach the quasi-steady state described by LH63.

Many features of the 6.10 Hz waves are similar to the 4.87 Hz waves and the
5.26 Hz waves shown previously. For example, the maximum ripple steepness is
strongly affected by the unsteady motion of the primary wave. Because of the short
wavelength, the 6.10 Hz waves have strong ripples in the trough of the underlying
wave (upstream in figure 15d and e). This agrees with our simulation in figure 10
where the crest modulation is accompanied by strong ripples in the wave trough.
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(a)

(b)

(c)

(d)

(e)

( f )

Figure 15. (a) The calculated 5 cm wave at the instant of maximum ripple steepness with ka = 0.15,
(b–f) experimental profiles of 6.10 Hz waves (λ = 5 cm, ka = 0.15) at 15 cm, 16.5 cm, 18 cm, 19.5 cm,
and 21 cm from the wavemaker following the wave crest.

Data for all three wavelengths with ka between 0.15 and 0.21 (where the theory of
LH95 predicts a quasi-steady state with very small ripple steepness) show significant
ripples that do not necessarily increase with larger wave steepness. We instead
find a correlation between ripple steepness and the crest asymmetry. The trend
is demonstrated in table 4 and figure 16. For comparison, we choose the wave
profiles recorded at three wavelengths downstream for each forcing frequency. Three
different wave steepness presented for each frequency are obtained with three different
wavemaker strokes. For each frequency listed in table 4, the small variations in the
wave steepness correspond to a large range of ripple steepness. Some of the data are
already shown in figures 11, 12(a), 13, 14(a), 15(b). The chosen crest is on the left
of the image with slight variations in its location. The degree of crest asymmetry is
represented by |S 0

+/S
0−|, a ratio between the forward and backward crest slopes. There

is a qualitative correlation between increasing ripple steepness θr and increasing crest
asymmetry at moderate wave steepness.

5.4. 6.70 Hz experiments

For the highest frequency experiment reported here, the wave decays very quickly
and its amplitude is very small after propagating 30 cm downstream. Hence only
waves 15 cm downstream are studied. Using different wavemaker strokes we obtain
ka = 0.16, 0.14, and 0.13 with 5.0 cm, 4.4 cm, and 4.1 cm wavelengths, respectively.
Internal resonance between the capillary ripples and the underlying wave becomes
more significant for these waves and six ripples are observed along the entire wave-
length with comparable steepness. Weakly nonlinear theory predicts sixth-harmonic
resonance at 6.59 Hz and fifth-harmonic resonance at 6.99 Hz, both studied by Mc-
Goldrick (1972). Compared to lower frequency waves, the ripples are not phase-locked
to the wave crest but still decay monotonically downstream. The wave crest is often
overtaken by the closest ripple on the backward face similar to the crest modulation
shown in our numerical simulation (figure 10). Since both the length and height scales
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Frequency f

(Hz) ka |S0
+| |S0−| |S0

+/S
0−| θr

4.87 0.16 0.26 0.16 1.7 0.18
0.19 0.31 0.16 1.9 0.16
0.21 0.72 0.18 4.0 0.46

5.26 0.19 0.30 0.21 1.4 0.14
0.18 0.40 0.14 2.9 0.22
0.21 0.49 0.16 3.2 0.37

6.10 0.15 0.46 0.10 4.6 0.27
0.15 0.32 0.13 2.6 0.18
0.16 0.27 0.13 2.2 0.15

Table 4. Maximum ripple steepness θr and the crest slopes, |S0
+| and |S 0−| for the experimental

wave profiles measured three wavelengths downstream from the wavemaker. At each frequency, the
three waves correspond to three different forcing strokes. The time-averaged wave steepness at this
location is represented by ka.
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Figure 16. Correlation between measured maximum ripple steepness θr and the degree of crest
asymmetry |S0

+/S
0−|. �, f = 6.10 Hz; •, f = 5.26 Hz; 4, f = 4.87 Hz.

of these ripples are closer to those of the underlying wave, the phenomenon is more
reminiscent of a ripple and a crest merging.

5.5. 4.21 Hz experiments

The longest waves measured in our experiments show significant ripple recurrence at
moderate wave steepness. Capillary ripples are visible for ka > 0.13. The average ka
of the two primary waves is 0.24 in figure 17. Here we extract the wave profiles using
an edge detection scheme and overlap the images in a reference frame following the
crest. Amplitudes of the ripples are greatest near the crests of the primary wave and
decay along the forward surface of the underlying wave. Approximately 12 ripples
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Figure 17. 4.21 Hz waves with ripple modulation close to the upstream crest and crest–ripple
interaction near the downstream crest, ka = 0.24. Edge-detected profiles following the wave crest
from 15 cm to 18.5 cm downstream.

are visible from the crest to the trough. These waves are measured from 15 cm to
18.5 cm downstream (at 0.5 cm intervals).

For the upstream (left) crest, modulation in the ripple steepness occurs over one
wavelength: the ripple amplitude decreases to a minimum (approximately) half a
wavelength downstream, and then increases again. The increase in ripple amplitude
from the first to the last profile in figure 17 is accompanied by steepening of the
forward face. This modulation is fairly repeatable when the wave train is generated
by the same wavemaker driving signal. The slight underlying wave modulation has
a similar period and therefore may cause the ripple modulation. Similar recurrence
cannot be modelled in our numerical simulation domain.

Our numerical results in figure 10, however, exhibit a phenomenon very similar to
the downstream crest in figure 17. Modulations in the underlying wave again cause
ripple modulation, but the primary crest overtakes the first ripple as it propagates
downstream. In the last profile of figure 17, the first ripple cannot be distinguished
from the flatter crest. The downstream crest form in the fifth to the last profiles
has striking similarity with figure 13 of LH95. However, the quasi-steady solution
of LH95 has a much larger wave steepness where our calculation indicates local
breaking. The merging of the largest ripple and the primary wave crest in figure 17
is more likely to be due to the unsteady effect that causes crest shifting in figure 10.

6. Concluding remarks
Our time-marching simulations demonstrate that large initial perturbations enhance

ripple development and even cause local breaking. The crest asymmetry and large crest
curvature during the gravity wave modulation are the most pronounced features of the
ripple generation and contribute to large ripples at moderate underlying wave steep-
ness. In contrast, viscous effects modelled by a viscous correction in the free-surface
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conditions have less influence on the ripple generation. With appropriate initial condi-
tions, the calculated maximum ripple steepness agrees reasonably well with previous
calculations of Dommermuth (1994) and experiments by Yermakov et al. (1986).

Generated by a flap-type wavemaker, the experimental wave profiles with moderate
ka show monotonically decaying waves with significant parasitic ripples. Following
an individual wave crest reveals slight modulation in the primary wave (possibly
due to Benjamin–Feir instability) and the corresponding ripple modulation. Large
modulation of the underlying waves can even cause backward-tilting crests. At fixed
locations, experiments show a direct correlation between large crest asymmetry and
significant ripple generation at moderate wave steepness. Experiments for 4.21 Hz and
6.70 Hz waves and our numerical simulations demonstrate unsteady ‘crest shifting’
motions where the wave crest merges with the first ripple on the forward face. These
characteristics may have significant implications for ripple generation on open seas
with and without wind.

It is worth mentioning that we have investigated the possibility of (sub-) super-
critical parasitic ripple generation. Our computations for unsteady 5 cm waves, how-
ever, demonstrate that the maximum ripple steepness increases monotonically with
the underlying wave steepness. Therefore the blocking effect as predicted by LH95
may be limited to quasi-steady conditions.

This research was supported by the Office of Naval Research partially under
contract number N00014-93-1-0867 and partially under the University Research
Initiative – Ocean Surface Processes and Remote Sensing at the University of
Michigan, contract number N00014-92-J-1650.
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